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Electricity and human civilization
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Electrical signals for sensation




. ;;, Electrical signals for locomotion
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Why electrical signals
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* Why electrophysiology?
* The history and basics of electrophysiology
* Methods In electrophysiology?

* Future of electrophysiology
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The muscle contraction is evoked by electrical signals!

Luigi Galvani
1786

Galvani’'s experiment demonstrating muscle contraction without using
dissimilar substances (metal and tissue). (A) When the surface of section
of the nerve touches the muscle, the leg contracts. (B) When the surface
of section of the right sciatic nerve touches the intact surface of the left
sclatic nerve, both legs contract
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The muscle contraction is evoked by electrical signals!

Smith College | Neurophysiology

Squid Giant Axon and neural muscle junction (NMJ)
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* Still, how is the electrical signals generated and propagated?
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* How to record the electrical signals intracellularly?



Invention of the glass micropipette electrode

]

Marshall Albert Barber
(circa 1911).

------



The glass micropipette electrode for intracellular recording

Milestone in Physiology
JGP 100th Anniversary

Voltage o e Vg
electrode /// b

Reference
/P7//\ > ié““’"m electrode

\_Cell _

Gilbert Ning Ling Ralph Gerard -

It would be difficult to exaggerate the important role that the capillary microelectrode has
played in Neurophysiology in the thirty years since its development.

Ketty, Seymour S. (1982).

Ling, Gilbert; Gerard, R. W. (December 1949). Journal of Cellular and Comparative Physiology 34 (3): 383-396.
Ling, G.; Gerard, R. W. (December 1949). Journal of Cellular and Comparative Physiology 34 (3): 397-405.

o Ling, G.; Woodbury, J. W. (December 1949). Journal of Cellular and Comparative Physiology 34 (3): 407-412.
e Ling, G.; Gerard, R. W. (December 1949). Journal of Cellular and Comparative Physiology 34 (3): 413-438.
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Intracellular Recording

from Crayfish Muscle Cells
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v RT P B |+ P INa* . +P- JCL .
m=F P [K*]. +P [Na*]. + P, [C17].

Here, Vm = Em at resting membrane potentlal
« . =the membrane potential (in volts, equivalent to joules per coulomb)

« P.., =the selectivity for that ion (in meters per second) G Oldman Equathn

. [10n]ﬂu¢ = the extracellular concentration of that ion (in moles per cubic meter, to match the other S units)

. [1011]LIl = the intracellular concentration of that 1on (in moles per cubic meter)
e R =the ideal gas constant (joules per kelvin per mole)

o T = the temperature in kelvins

¢ F' = Faraday's constant (coulombs per mole)

1
Vm = RT ln [K ]O Here, Vm = Em at the
F [K + ] | reversal potential

|

At room temperature (25 °C), RT/F may be treated as a
constant and replaced by 25.693 mV for cells.




Driving force

Ik = (Y X Vi) = (' X Ex) =Y X (Vi — E).

Driving force = Conductance multiplied by Reversal potential

 Muscle contraction by electrical signals
* |on channels ( voltage-gated, ligand-gated)

* Goldman Equation for membrane potential
Cell & lon ) :
* Resting membrane potential

* Reversal potential (Eggy)
* Driving force for channels/ion
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The end-plate potential (EP) passively propagates

A
J\/\/\\f—‘\-—-— —_—

Muscle
fiber

2 3 4 mm
1 1 |
T 1 1

Synaptic current
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Interior of muscle fiber

Still, how is the electrical signals generated and propagated?
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Squid Giant Axon Recording

”

Removing"Nerve from Mantle

L ]
it

Since the axon is controlling the muscle contraction, shall we record from them?

All or none.
Threshold.

Largest axon
Fasted travel

Simultaneously



Voltage clamp recording

2. Compare V,,, to desired
(command) potential

1. Measure membrane

potential (V)

Membrane
potential
amplifier

N
N

. amplifier

Feedback

/

Command —
potential

N 4
I\/

3. When V;;, and command potential differ,
inject or withdraw current from the axon

/

/,

+

Signal

\\

generator J_

4. Measure compensatory
current
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Voltage clamp recording
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Voltage clamp recording
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Squid Giant Axon in electrophysiology

Hodgkin-Huxley Expts, 1952
Squid Giant Axon

Alan Hodgkin Andrew Huxley

Silver-silver
chionde
alectrode

................

-
; : "3
,,. 5T -"_. : ot e :'.l raw © Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.comy

Few neurons, large diameter
Large enough to insert microelectrodes

Stimulating microelectrodes (inject current) to disturb cell with electrical
stimuli

Recording microelectrodes (see current changes in cell and record them)

http://www.science.smith.edu/departments/NeuroSci/courses/bio330/squid.html




Refractory period of action potentials

Touch 1s transmitted by electrical signals!



Wilder Penfield

et

Cortical homunculus ("cortex man®)

Touch feeling 1s evoked by electrical signals!
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Action potentials are regenerated at the nodes of Ranvier

A Normal axon
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Voltage clamp
Action potential
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Threshold

Na+ conductance
Kinetics

Waveform
Refractory period
Nodes of Ranvier
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~ » Muscle contraction by electric.al signals
* lon channels ( voltage-gated, ligand-
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* Goldman Equation for membrane * End-plate potential
potential * Voltage clamp
e Resting membrane potential Action * Action potential
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The term Synapse by Sherrington in 1897

‘So far as our present knowledge goes, we
are led to think that the tip of a twig of the
arborescence is not continuous with but
merely in contact with the substance of
P the dendrite or cell body on which it

" impinges. Such a special connection of
one nerve cell with another might be
called a synapse.’
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Schematic summary view of the mammalian neuromuscular junction. Sherrington, C.S. (1897) in Textbook of Physiology (Foster, M., ed.), p. 60

While Ramaony Cajal was laying the anatomical basis for modern neuroscience,
Sherrington’s work was laying the basis for the physiological principles
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Electrical synaptic transmission

A Experimental setup B Electrical synaptic transmission

Current
injection mV

Presynaptic neuron: 100 -
lateral giant fiber
-7 Presynaptic —— Presynaptic 50 I
#  electrode potential |
|
|
0~ [
Postsynaptic
electrgdep |_| Current pulse
| to presynaptic
: fiber
synapse Current _ I
e 50
injection :
> : [
N % Postsynaptic I
\\\ potential o5 L :
\\ I
|
Postsynaptic
neuron: oL
?iant motor i | i i :
b 0O 1 2 3 4ms

Furshpan and Potter 1957 and 1959
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Electrical synaptic transmission

Current pulse to
presynaptic cell

Voltage recorded Normal

in presynaptic cell

Postsynaptic ’ \
cytopiasm ¥ \

Voltage recorded
in postsynaptic cell

extracetiular space

=l
D €

Channel formed by
pores in each membrane

Connexon Connexin ?os;l?mnloops
Nean NTH o Presynaptic
cytoplasm
=
Extracabular

Makowski et al. 1977 Unwin and Zampighi 1980



Neurons communicate through Synapses

A Current pathways at electrical synapses B Current pathways at chemical synapses
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Synaptic transmission at chemical synapses
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action potential
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Four regions of a model neuron

Model Sensory Motor Local Projection Neuroendocrine
neuron neuron neuron interneuron interneuron cell
- f « /
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Question: how much sense could electrical signals make
PR regarding information coding and integration?



Synaptic Potential will be Propagated and computed along Dendrites
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Cheng, HT. (1951) Dendritic potential of cortical neurons produced by direct electrical
stimulation of the cerebral cortex. J Neurophysiol. 1951 Jan;14(1):1-21.



Synaptic Potential will be Propagated and computed along Dendrites

Dear Chang,

I have just finished reading ‘The Repetitive Discharges of
Reverberating Cortico-Thalamic Circuits.
I thank you for sending me your work. Without hesitation, I

K B R R Y eIk 7 — can readily say that your article is a masterpiece. Your deep

F 3 42 R 2% 2 S, and systematic analysis of the experimental data and your
E , :](EF ’Iﬁqj TEA% observations are of a great importance. Moreover, I must
5 PH E’é 320= HLXJ)EE ﬁﬁ ‘I'K congratulate you for the clarity of your presentation and your

impartial view of the state of previous works. Your article set a
good example to us all.

I thank you for giving me the opportunity of reading it. As your
elder, I am happy to say that you are one of the key figure of
contemporary physiology. I wish you many other successes.

Yours
Lorente de No

N
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* Why electrophysiology?
* The history and basics of electrophysiology
* Methods In electrophysiology

* Future of electrophysiology
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Extracellular recording

* Metal electrode

* Local field potential

* Single units: single/multiple channles
* Glass caplillaries

* Juxtacellular recording

* Extracellular recording

* Cell-attached recording

* Loose-patch recording



Juxtacellular recording
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Feature Selectivity & Activity dependency of Visual Pathway

1. D. H. Hubel, T. N. Wiesel, Receptive fields of single neurones in the cat's striate cortex. The Journal
of physiology 148, 574 (Oct, 1959).

2. D. H. Hubel, T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the
cat's visual cortex. The Journal of physiology 160, 106 (Jan, 1962).

3. T. N. Wiesel, D. H. Hubel, Effects of Visual Deprivation on Morphology and Physiology of Cells in the
Cats Lateral Geniculate Body. Journal of neurophysiology 26, 978 (Nov, 1963).

2N 4. T. N. Wiesel, D. H. Hubel, Single-Cell Responses in Striate Cortex of Kittens Deprived of Vision in
X One Eye. Journal of neurophysiology 26, 1003 (Nov, 1963).
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The historical moments for electrophysiology and vision research




Place Cell and Grid Cell

A. Spikes on trajectory B. Rate maps

Place cell

1. Place cell

Nobel Prize 2014 e

Grid cell

2. Grid cell

O'Keefe |, D. J. (1971). "The hippocampus as a spatial map. Preliminary evidence from unit
activity in the freely-moving rat". Brain Research 34 (1): 171-175.

Hafting, T.; Fyhn, M.; Molden, S.; Moser, M. -B.; Moser, E. |. (2005). "Microstructure of a spatial
map Iin the entorhinal cortex”. Nature 436 (7052): 801-806.

Jacobs, J.; Weidemann, C. T.; Miller, J. F.; Solway, A.; Burke, J. F.; Wel, X. X.; Suthana, N.; Sperling,
M. R.; Sharan, A. D.; Fried, |.; Kahana, M. J. (2013). "Direct recordings of grid-like neuronal
activity in human spatial navigation”. Nature Neuroscience
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Context recognition (Where am I)

. — Context A Context B
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John O'Keefe

Project 1: The neural correlates of context and place fields in hippocampus




Single-unit recording in dorsal CA3 in vivo in distinct contexts Qiu Shou

Context

A

0.1mv
L

0.5 ms

A vs. B: 1% acetic acid, metal grid, wall

A M B A B A B B A A B A B A B B A
|| Context Entry
—l/
Door open
_|]_|_|_l.l_| m-- ks al | iU
0 1000 2000 3000 4000 5000 6000
Time (s)

54



Context-modulated neurons show place fields

Context A — preferring unit Context B — preferring unit
MIRARREREING | b bt ol botidg o
GBS L iy nmm.'m LT




Context-unmodulated neurons also show place fields

el e i
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Firing Rate (Hz}

Context cell and place cell are dissociable.
How about head-direction cells and other types of cells?
How are different functions represented in the CA3?

We are using improved paradigm to address these questions.

56

Qixin Yang



High-through output recording on the chip (MEA)

MaxOne

High-resolution live cell imaging
platform

*Label-free detection of sub-cellular
and network activity

*Selective electrical stimulation
*Comprehensive data analysis tools




High-through output recording on the chip (MEA)

Key Features per Well

26,400 electrodes (9.3x5.45 sg-um, 17.5 um pitch)

*1024 low-noise readout channels

*32 stimulation channels

eLarge sensor area (3.85x2.10 sg-mm)

*Switch-matrix technology for flexible array reconfiguration
*Non-invasive, label-free

*High-resolution activity map

*Axonal action potential propagation tracking

maxweu
BIOSYSTE



Cells growing on the chip (MEA)

500 pm

Delay map

500 uym

Amplitude map

., hs ‘-
i gty

" \\f..

s LI

Vs e R A v it

v

WAVR SN W, e

- » o
ot T
s I *

D~

Wi s

(SR~ AT
ik G R

s Y

.
.
.

S
Ay O

3

100 38.7

seconds

Good for slice recording, retina recording
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MEA application in non-neuron cells

Stem cell derived human heart cells
Industrial production of cardiomyocytes (Cytiva™ Plus)

Functional
Performance
Metrics (MEA)

FPD Amp

1Sl

@ businessmview webinar | 19 March 2014 5
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Intracellular recording

* Whole-cell recording
* Single-channel recording
* Sharpe electrodes
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Cut-open oocyte recording

Perfusion w=—p— S
(7 Yo Cannida —\




Gating currents by channel opening

A Sodium gating current B Potassium gating current

7.5C 7.5'C
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8 -15
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Intracellular recording in primates

marmoset A il
Signal wire
Sharp electrode
J(® |—»
/—Guide tube
Guide tube
1® | |—» anchoring layer 2

Guide tube E ap-
anchoring layer 1 % E? ,E‘ \E
Bone -90

Chamber— :
Dura 4*"_ -~ e . .
Brain LIRS Neuron 0 200 400 600

— Time (ms)

Gao et al.,, 2016, Neuron 91, 905-919
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The revolutionary breakthrough — patch clamp technique

Bert Sakmann

Mlcropupette
QOpening 0.5 ..
Low |eS|stance
Seal (50 M)

Erwin Neher 1991 1%
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The revolutionary breakthrough — patch clamp technique

The Patch Clamp Method

© Sinauer Associates, Inc.
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The revolutionary breakthrough — patch clamp technique

Bert Sakmann

Mlcropupette
QOpening 0.5 ..
Low |eS|stance
Seal (50 M)

Erwin Neher 1991 1%
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Electrophysiology Development

* Extracellular recording

* Metal electrode
 LFP / Oscillations

* Intracellular recording

* Patch-clamp recording
* Voltage clamp: excitatory post-synaptic current (EPSC)
* Current clamp: excitatory post-synaptic potential (EPSP)
* Inside-out
* Qutside-out
* Whole-cell
* Dendritic recording
* Axon recording
* Capacitance recording



Single-channel recording

C Total ionic current in a patch of membrane

2/

Step of elementary current

100 ms

Neher, E. and B. Sakmann (1976). "Single-channel

3.9 pA

currents recorded from membrane of denervated frog
muscle fibres." Nature 260(5554): 799-802.
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A patch-clamp rig
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Patch-clamp in acute brain slice

FCOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

2.9 Whole-cell recordings

Cellular Mechanisms of Brain Function
Prof. Carl Petersen
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Dendritic recording

Greg J Stuart
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Axon recording

Soma
-66 mV

Axon
—62 mV

Overlay
Soma
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High-through output automatic patch clamp in industry
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Figure 2. Flow-through Design of the
ITonWorks Barracuda Consumable Well
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High-through output automatic patch clamp in industry
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High-through output automatic patch clamp in industry
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High-through output automatic patch clamp in industry
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https://www.moleculardevices.com/en/assets/app-
note/dd/cns/patchxpress-7000a-system




In vivo patch-clamp recording
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EEG

* The electroencephalogram (EEG) 1s a recording of the electrical
activity of the brain from the scalp.
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Brain-machine interface
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Electrophysiology Development

* Extracellular recording
* Metal electrode
* Glass micropipette
* MEA recording

* Intracellular recording

* Patch-clamp recording
* Voltage clamp: excitatory post-synaptic current (EPSC)
* Current clamp: excitatory post-synaptic potential (EPSP)
* |Inside-out
* Qutside-out
* Whole-cell
* Dendritic recording
* Axon recording
* Capacitance recording
* Cut-open oocyte recording

* Two-electrode recording
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m More application in the clinics and system neuroscience

Topics to add in future
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* Why electrophysiology?
* The history and basics of electrophysiology
* Methods In electrophysiology

* Future of electrophysiology
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Tools to record biological signals
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Photo-tagging recording
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RIEEERNIC T B AR 7B SN Neuropixel
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Neuralink by Elon Musk




Neuralink by Elon Musk

A packaged sensor device Thread implantation and packaging.

Y—uysB-Cc
——3,072 Channels

doi: https://doi.org/10.1101/703801



Neuralink by Elon Musk
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Neuralink by Elon Musk
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Neuralink by Elon Musk
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Introducing Neuralink
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Beyond electrophysiology

Combined with optical imaging
in the future.




All-optical: calcium imaging + precise optogenetic
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Voltage-sensitive dye imaging




Future of electrophysiology

* Increase Channel count

* Electrode: More stable recording and tissue friendly
* Wireless

* Optical Imaging

* All-optical: calcium imaging + precise optogenetic
* \Voltage-sensitive dye and indicator

* Miniscope
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Recommendation for further reading

* http://www.sfn.org/about/history-of-neuroscience

NEUROSCIENCE

SOCIETY for MEMBERSHIP MEETINGS CAREERS INITIATIVES ADVOCACY OUTREACH PUBLICATIONS RGOS O

History of Neuro stience

The History of Neuroscience

the field's evolution to present day

Reference;
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HRETE]: 200110 T Kenneth Harris

ISBN: 9757030085208
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Membranes

Bertil Hille
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Reference for patch-clamp recording
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260, 799 (Apr 29, 1976).

2. H. R. Brenner, B. Sakmann, Gating properties of acetycholine receptor in newly formed neuromuscular synapses.
Nature 271, 366 (Jan 26, 1978).

3. B. Sakmann, H. R. Brenner, Change in synaptic channel gating during neuromuscular development. Nature 276,
401 (Nov 23, 1978).

4. B. Sakmann, G. Boheim, Alamethicin-induced single channel conductance fluctuations in biological membranes.
Nature 282, 336 (Nov 15, 1979).
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- END -

Progress in science depends on new
techniques, new discoveries and
new ideas, probably in that order.

— Sydney Brenner, —

chun.xu@ion.ac.cn




